Members
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: New Results

Symmetric cryptology

Participants : Xavier Bonnetain, Anne Canteaut, Pascale Charpin, Sébastien Duval, Virginie Lallemand, Gaëtan Leurent, Nicky Mouha, María Naya Plasencia, Yann Rotella.

Block ciphers

Our recent results mainly concern either the analysis and design of lightweight block ciphers.

Recent results:

Authenticated encryption and MACs

A limitation of all classical block ciphers is that they aim at protecting confidentiality only, while most applications need both encryption and authentication. These two functionalities are provided by using a block cipher like the AES together with an appropriate mode of operation. However, it appears that the most widely-used mode of operation for authenticated encryption, AES-GCM, is not very efficient for high-speed networks. Also, the security of the GCM mode completely collapses when an IV is reused. These severe drawbacks have then motivated an international competition named CAESAR, partly supported by the NIST, which has been recently launched in order to define some new authenticated encryption schemes (http://competitions.cr.yp.to/caesar.html). The project-team is involved in a national cryptanalytic effort in this area led by the BRUTUS project funded by the ANR.

Recent results:

Stream ciphers

Stream ciphers provide an alternative to block-cipher-based encryption schemes. They are especially well-suited in applications which require either extremely fast encryption or a very low-cost hardware implementation.

Recent results:

Cryptographic properties and construction of appropriate building blocks

The construction of building blocks which guarantee a high resistance against the known attacks is a major topic within our project-team, for stream ciphers, block ciphers and hash functions. The use of such optimal objects actually leads to some mathematical structures which may be at the origin of new attacks. This work involves fundamental aspects related to discrete mathematics, cryptanalysis and implementation aspects. Actually, characterizing the structures of the building blocks which are optimal regarding to some attacks is very important for finding appropriate constructions and also for determining whether the underlying structure induces some weaknesses or not. For these reasons, we have investigated several families of filtering functions and of S-boxes which are well-suited for their cryptographic properties or for their implementation characteristics.

Recent results:

Side-channel attacks

Physical attacks must be taken into account in the evaluation of the security of lightweight primitives. Indeed, these primitives are often dedicated to IoT devices in pervasive environments, where an attacker has an easy access to the devices where the primitive is implemented.

Recent results:

Security of Internet protocols

Cryptographic primitives are used to in key-exchange protocols such as TLS, IKE and SSH, to verify the integrity of the exchange. The recent works by K.  Bhargavan and G. Leurent show the real-word impact of some recent theoretical cryptanalytic works.

Recent results: